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a b s t r a c t

In this paper, a first application of an adaptive Generalized Finite Element Method to

free longitudinal vibration analysis of straight bars and trusses is presented. The

Generalized Finite Element Method is developed by enriching the standard Finite

Element Method space, whose basis performs a partition of unity, with knowledge

dependent on the geometric and mechanical properties of the element. The proposed

approach converges very fast and is able to approximate the frequency related to any

vibration mode. The variational problem of free vibration is formulated and the main

aspects of the adaptive Generalized Finite Element Method are presented and discussed.

The efficiency and convergence of the proposed method in vibration analysis of uniform

and non-uniform straight bars are checked. The application of this technique in a truss is

also presented. The frequencies obtained by the adaptive Generalized Finite Element

Method are compared with those obtained by the analytical solution, the Composite

Element Method and the h-version of Finite Element Method.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

The efficient use of natural resources is a current challenge, leading the most recent projects to focus on the optimum
structural solution. As a consequence, engineering structures have become taller, slender, light and cheaper. But these
features highlight the significance of the dynamic effects which must be assessed with precision. Accurate and efficient
numerical procedures must be developed in order to design safe structures.

Among the structural dynamic methods, analytical solutions of the free vibration problems are known only for simple
geometries and specific boundary conditions. The exact solutions may provide adequate insight into the physics of the
problem and help in checking the accuracy and the efficiency of numerical methods.

Several studies have been dedicated to the problem of exact solutions for free longitudinal vibration of uniform [1] and
non-uniform rods [2–4] and many researchers have developed numerical methods for vibration analysis. The Finite
Element Method (FEM) [5] and the Composite Element Method (CEM) [6–8] are examples of these methods.

The free vibration analysis by the standard Finite Element Method gives good results for the lowest frequencies but
demands great computational cost to work up the accuracy for the higher frequencies. In the Composite Element Method,
the basic shape functions are the same as the Finite Element Method but they are enriched by adding analytical functions
related to the solution of a simple similar problem with certain special boundary conditions. Thus the Composite Element
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Method can be understood as an enriched and hierarchical Finite Element Method. It is more accurate than the h-version of
the Finite Element Method for the same number of degrees of freedom when it is employed in the free vibration analysis of
bars and beams [9,10]. It is, however, less accurate than the p-version of the Finite Element Method for the lowest
frequencies [11]. An improved version of the Composite Element Method for free vibration analysis of beams was recently
proposed [12]. This new version differs from that in Ref. [8]. The new analytical shape functions are determined by the
boundary conditions of each beam analyzed.

As a further attempt to optimize the enrichment technique, the Generalized Finite Element Method (GFEM), which was
conceived on the basis of the Partition of Unity Method [13,14], allows the inclusion of a priori knowledge about the
fundamental solution of the governing differential equation. This approach ensures accurate local and global
approximations.

The Generalized Finite Element Method was independently proposed by Babuska and colleagues [13–15] and by Duarte
and Oden [16,17] under the following names: Special Finite Element Method, Generalized Finite Element Method, Finite
Element Partition of Unity Method, hp Clouds and Cloud-Based hp Finite Element Method. In this sense, several meshless
methods recently proposed may be considered special cases of this method. Strouboulis et al. [18] defined otherwise the
subclass of methods developed from the Partition of Unity Method including hp Cloud Method of Oden and Duarte [16,17],
the eXtended Finite Element Method (XFEM) of Belytschko and co-workers [19,20], the Generalized Finite Element Method
(GFEM) of Strouboulis et al. [21,22], the Method of Finite Spheres of De and Bathe [23], and the Particle-Partition of Unity
Method of Griebel and Schweitzer [24].

Recently several studies have indicated the efficiency of the Generalized Finite Element Method and other methods
based on the Partition of Unity Method in problems such as analysis of cracks [25–28], dislocations based on interior
discontinuities [29], large deformation of solid mechanics [30] and Helmholtz equation [31,32]. In structural dynamics, the
Partition of Unity Finite Element Method, along with the interface element technique, was applied by Hazard and Bouillard
[33] to numerical analysis of structures equipped with passive damping layers. Hazard and Bouillard formulated a Mindlin
plate element applying the partition of unity technique with polynomial enrichment. They adopted a weak penalty method
in order to prescribe the essential boundary conditions.

In this paper, a first application of an adaptive Generalized Finite Element Method to free longitudinal vibration analysis
of straight bars and trusses is presented.
2. Variational form of the axial free vibration of bars

Consider a straight bar with axial strains, as illustrated in Fig. 1. The basic hypotheses are [34]: (a) The cross sections
which are straight and normal to the axis of the bar before deformation remain straight and normal after deformation and
(b) the material is elastic, linear and homogeneous. The vibration of the bar is a time dependent problem. The momentum
equation that governs this problem is the partial differential equation

rAðxÞ
q2u

qt2
�

q
qx

EAðxÞ
qu

qx

� �
¼ pðx; tÞ; (1)

where A(x) is the cross section area, E is the Young modulus, r is the specific mass, p is the externally applied axial force per
unit length and t is the time. The problem of free vibration consists in finding the axial displacement u ¼ uðx; tÞ which
satisfies Eq. (1) when pðx; tÞ ¼ 0. The solution u ¼ uðx; tÞ must satisfy the boundary and initial conditions defined in the
problem.

According to Carey and Oden [35], in order to obtain the variational form of a time dependent problem, one should
consider the time t as a real parameter and develop a family of variational problems in t. This consists in selecting test
functions v ¼ vðxÞ, independent of t, and applying the weighted-residual method. If the Finite Element Method is used to
represent the spatial behavior of the solution, one obtains a system of ordinary differential equations in terms of the time
dependent degrees of freedom. This approach is called the semi discrete formulation of the problem.
x

x

p (x, t)
u (x, t)

Fig. 1. Straight bar.
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Assuming periodic solutions uðx; tÞ ¼ eiotuðxÞ, where o is the natural frequency, the free vibration of a bar becomes an
eigenvalue problem with variational statement: find a pair ðl;uÞ, with u 2 H1ð0; LÞ and l 2 R, so that

Bðu;vÞ ¼ lFðu;vÞ (2)

for all admissible test functions v 2 H1ð0; LÞ, where l ¼ o2 and, B : H1 � H1/R and F : H1 � H1/R are bilinear forms
obtained from

Bðu;vÞ ¼

Z L

0
EA

qu

qx

qv

qx
dx; (3)

Fðu;vÞ ¼

Z L

0
rAuv dx: (4)

In numerical methods, finite dimensional subspaces of approximation Hh � H1ð0; LÞ are chosen and the variational
statement becomes: find lh 2 R and uh 2 Hhð0; LÞ so that

Bðuh;vÞ ¼ lhFðuh;vÞ;8v 2 Hh: (5)

The approximated solution uhðxÞ can be written, for a discrete system with N degrees of freedom, in the following form:

uhðxÞ ¼
XN

j¼1

ujfjðxÞ; (6)

where fj are the basis functions of the subspace of approximation Hh and uj are the corresponding degrees of freedom. It
will be shown that different subspaces of approximation are proposed for the Finite Element Method, the Composite
Element Method and the Generalized Finite Element Method.

3. Finite element method

The standard Finite Element Method uses polynomials shape functions in the approximated solution which can be
expressed generally in matrix form as

ue
hðxÞ ¼ NTq; (7)

where N is the matrix of shape functions and q is the displacement vector. The polynomial functions may be of any order,
the most simple being the linear ones. Taking the uniform bar element (Fig. 2) with one degree of freedom per node, the
terms of the approximated solution (Eq. (7)) using linear Lagrangian polynomials as local shape functions are defined in the
master element domain as

NT
¼ ½1� x x�; (8)

qT ¼ ½u1 u2�; (9)

x ¼
x

Le
; (10)

where Le is the element length, and, u1 and u2 are the nodal displacements.

4. Composite element method

The standard Finite Element Method shape functions can be enriched by the addition of non-polynomial functions
related to the closed form solutions from the classical theory of free vibration analysis.

Weaver Junior and Loh [36] used analytical solutions as shape functions in order to represent lateral displacements in
the local vibration analysis of trusses. The same approach was applied by Ganesan and Engels [37] in order to obtain a
hierarchical model of finite elements of Euler–Bernoulli beams. Zeng [7,8] developed elements of trusses, Euler–Bernoulli
beams and frames using this approach to vibration analysis. In the studies of Zeng [6–8] this technique was called
‘‘Composite Element Method’’ and its formulation is briefly explained here.
x
node 2node 1

u2 (t)

Le

u1 (t)

Fig. 2. Uniform bar element.
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According to the Composite Element Method, the approximated solution in the master element domain is the sum of
two components:

ue
h ¼ uFEM þ uCT; (11)

or in matrix form

ue
h ¼ NTqþ ØTc; (12)

where uFEM is the Finite Element Method displacement field function based on nodal degrees of freedom, uCT is the classical
theory displacement field function based on field degrees of freedom, N is the shape function vector of the standard Finite
Element Method, q is the nodal displacement vector, Ø is the vector of analytical functions from the classical theory and c is
the field displacement vector.

The uFEM displacement field component for the bar element (Fig. 2) is usually the linear Finite Element Method solution
defined in Eqs. (7)–(10). The classical theory displacement field component uCT of the bar is obtained by the following
expressions [7]:

ØT
ðxÞ ¼ ½F1 F2 . . . Fn�; (13)

cT ¼ ½c1 c2 . . . cn�; (14)

Fr ¼ sinðrpxÞ; r ¼ 1;2; . . . ;n; (15)

where ci are the field degrees of freedom and Fr are the analytical functions obtained from the solution of the free vibration
problem of a rod with constrained end displacements.

The new degrees of freedom related to the enrichment shape functions Fr do not have particular physical meaning and
they were called c degrees of freedom by Zeng [7]. The enrichment proposed by the Composite Element Method produces
hierarchical models and better results than those obtained by h-version of the Finite Element Method [9,10]. The
hierarchical version produced by increasing the number of analytical functions Fr is known as c-version.
5. Generalized finite element method

The Generalized Finite Element Method is a Galerkin method whose main goal is the construction of a finite
dimensional subspace of approximating functions using local knowledge about the solution that ensures accurate local and
global results. The Generalized Finite Element Method was initially named Partition of Unity Finite Element Method by
Melenk and Babuska [13], and the local enrichment in the approximation subspace is incorporated by the partition of unity
approach. The standard Finite Element Method may be considered as a special case of the Generalized Finite Element
Method.

The approximated solution proposed by the Generalized Finite Element Method in the master element domain may be
written as the sum of two components:

ue
h ¼ uFEM þ uENRICHED; (16)

where uFEM is the Finite Element Method component based on nodal degrees of freedom and uENRICHED is the enriched
component by the partition of unity approach based on field degrees of freedom. In this sense, the bar approximated
solution on a master element is

ue
hðxÞ ¼

X2

i¼1

ZiðxÞui þ
X2

i¼1

ZiðxÞ
Xnl

j¼1

ðgijðxÞaij þjijðxÞbijÞ

2
4

3
5; (17)

where Zi are the partition of unity functions, gij and jij are the enrichment functions, nl is the number of enrichment levels,
ui are the nodal displacements (nodal degrees of freedom) and, aij and bij are the field degrees of freedom related to the
enrichment functions gij and jij, respectively. For the linear bar element (Fig. 2), the partition of unity functions are those
given by Eq. (8).

In this study, the enrichment functions will be written as

g1j ¼ sinðbjLexÞ; (18)

g2j ¼ sinðbjLeðx� 1ÞÞ; (19)

j1j ¼ cosðbjLexÞ � 1; (20)

j2j ¼ cosðbjLeðx� 1ÞÞ � 1; (21)
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bj ¼

ffiffiffiffi
r
E

r
mj; j ¼ 1;2; . . . ;nl; (22)

where Le is the element length, E is the Young modulus, r is the specific mass and mj is a frequency related to the
enrichment level j. The coefficients bj are coupling terms between the spatial and time dependent parts of the governing
differential equation. It must be noted that when gij ¼ 0 and jij ¼ 0, or nl ¼ 0, the proposed method corresponds to the
standard Finite Element Method. As can be seen, the enriched component of the solution, uENRICHED, is different from that of
the Composite Element Method, uCT.

The enrichment functions (Eqs. (18)–(21)) are those obtained from the space of the fundamental solutions of the
differential equation governing the uniform bar free vibration in order to include some knowledge about the differential
equation being solved. They incorporate geometric and mechanical properties of the elements because these functions are
dependent of the parameter bj (Eq. (22)) which is function of length, mass density and Young modulus of the elements.
These functions were mainly chosen in order to generate shape functions that have compact support in the element
domain leading to global solution continuity. In this sense, the introduction of boundary conditions follows the standard
finite element procedure.
Choice of the target vibration 

mode 

target = chosen mode order

Solution by FEM (GFEM nl = 0 )

mesh ndof  > =  target 

Obtain ωtarget, FEM 

i = 1 

ωtarget,i =  ωtarget,FEM

i = i + 1 

Solution by GFEM 
nl = j and µj = ωtarget,i-1 

Obtain ωtarget,GFEM 

ωtarget,i =ωtarget, GFEM

Convergence test 
|ωtarget,i -  ωtarget,i-1| < tolerance

End 
Show results

NO

YES

j = 1

Fig. 3. Flowchart of the Adaptive Generalized Finite Element Method (GFEM).
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The enrichment functions, gij and jij (Eqs. (18)–(21)), and their degrees of freedom, aij and bij (Eq. (17)), are associated to
the elements. The nodal degrees of freedom ui are associated to the nodes as in the standard Finite Element Method. In this
approach, the degrees of freedom aij and bij (Eq. (17)) do not have particular physical meaning.

The idea behind the adaptive Generalized Finite Element Method is similar to the Rayleigh’s quotient to evaluate a
specific eigenvalue. The Rayleigh’s quotient is a scalar lr given by [38,39]

lr ¼
uT

r Kur

uT
r Mur

; (23)

where K and M are the stiffness and mass matrices of the analyzed system, respectively. It is proven that if the arbitrary
vector ur coincides with one of the system eigenvectors, then the quotient lr reduces to the associated eigenvalue. This
quotient has stationary values in the neighborhood of the system eigenvectors. In this sense, the Rayleigh’s quotient can be
applied iteratively to improve an eigenvalue from an initial trial eigenvector.

The adaptive Generalized Finite Element Method is an iterative approach whose main goal is to increase the accuracy of
the frequency (eigenvalue) related to a chosen vibration mode with order denoted by ‘‘target order’’. The flowchart with
blocks A to H presented in Fig. 3 represents the adaptive process. In this flowchart, otarget corresponds to the frequency
related to the target mode. The first step of the adaptive Generalized Finite Element process (blocks A to C) consists in
obtaining an approximation of the target frequency by the standard Finite Element Method (Generalized Finite Element
Method with nl=0) with a coarse mesh. The finite element mesh used in the analysis has to be as coarse as is necessary to
capture a first approximation of the target frequency. The subsequent steps (blocks D to G) consist in applying the
Generalized Finite Element Method with just one enrichment level (nl=1) to the same finite element mesh assuming the
frequency mj (j=1, blocks D and E) of the enrichment functions (Eqs. (18)–(21)) as the target frequency obtained in the last
step. Thus, no mesh refinement is necessary along the iterative process.

Both the standard Finite Element Method and the adaptive Generalized Finite Element Method allow as many
frequencies as the total number of degrees of freedom to be obtained. However, in this approach just the precision of the
target frequency is effectively improved by the iterative process. The other frequencies present errors similar to those
obtained by the standard Finite Element Method with the same mesh. In order to improve the precision of another
frequency, it is necessary to perform a new analysis by the adaptive Generalized Finite Element Method, taking this new
one as the target frequency. Few steps are necessary for the method to converge, for each target frequency, and the number
of degrees of freedom is smaller than those of the standard Finite Element Method to achieve a similar precision, resulting
in an appreciative global performance.

An alternative p adaptive scheme arises by increasing the number of enrichment levels (nl) in each step, but it will be
left for future study.
6. Applications

The present adaptive method is applied to problems with known analytical solutions such as uniform and non-uniform
bars. A simple practical application in truss vibration analysis is also performed. The applications presented below are very
simple for two main reasons: the incipient state of the research, and because the revised literature offers an extensive basis
of comparison only on simple applications. The examples are useful to compare the Finite Element Method, the Composite
Element Method and the Generalized Finite Element Method performances. Once the proposed method is verified, it can be
applied in practical situations.

These examples are solved by the h-version of the Finite Element Method with a regular mesh, the c-version of the
Composite Element Method and the adaptive Generalized Finite Element Method, in order to compare the accuracy of their
results. The number of degrees of freedom (ndof) considered in each analysis is the total number of effective degrees of
freedom after introduction of boundary conditions. The analyzed cases are hypothetical and the dimensions are generic,
thus the units are omitted.

The adaptive Generalized Finite Element Method was coded in the software Maple. The integrations and eigenvalue
problems were solved using intrinsic Maple functions. The eigenvalues were computed by the QR method.

As an intrinsic imposition of the adaptive method, each target frequency is obtained by different iterative analyses. The
mesh used in each analysis is the coarser one, that is, just as coarse as is necessary to capture a first approximation of the
L

x u

Fig. 4. Uniform fixed-free bar.
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target frequency. The reader should be advised that the frequencies presented, other than the target one, are just to
emphasize the ability of the adaptive method to achieve one specific (target) frequency each time it is run.
6.1. Uniform fixed-free bar

The free axial vibration of a fixed-free bar (Fig. 4) with length L, elasticity modulus E, mass density r and uniform cross
section area A, has exact natural frequencies (or) given by [34]

or ¼
ð2r � 1Þp

2L

ffiffiffiffi
E

r

s
; r ¼ 1;2; . . . : (24)

In order to compare the exact solution with the approximated ones, in this example a non-dimensional eigenvalue wr

given by

wr ¼
rL2o2

r

E
; (25)

will be used.
Four different adaptive Generalized Finite Element analyses are performed in order to obtain the first four frequencies.

The behavior of the relative error in each analysis is presented in Fig. 5. In order to capture a first approximation of the
target vibration frequency, for the first frequency (Fig. 5a), the finite element mesh must have at least one element (one
effective degree of freedom), for the second frequency (Fig. 5b), it must have at least two elements (two effective degrees of
freedom), and so on.

Table 1 presents the relative errors obtained by the numerical methods. The Finite Element Method (FEM) solution is
obtained with 100 elements, that is, 100 effective degrees of freedom. The Composite Element Method (CEM) solution is
obtained with just one element and 15 enrichment functions that correspond to one nodal degree of freedom and 15 field
degrees of freedom resulting in 16 effective degrees of freedom. The analyses by the adaptive Generalized Finite Element
Method (GFEM) have no more than 13 degrees of freedom in each iteration. For example, the fourth frequency is obtained
taking 4 degrees of freedom in the first iteration and 13 degrees of freedom in the two subsequent ones.
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Fig. 5. Error in the Adaptive Generalized Finite Element analyses of fixed-free uniform bar. (a) Analysis 1: 1st target frequency—1 element mesh, (b)

analysis 2: 2nd target frequency—2 element mesh, (c) analysis 3: 3rd target frequency—3 element mesh and (d) analysis 4: 4th target frequency—4

element mesh. : 1st frequency; : 2nd frequency; : 3rd frequency; and : 4th frequency.
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Table 1
Results to free vibration of uniform fixed-free bar.

Frequency Exact solution FEM (100e) ndofa=100 CEM (1e 15c) ndofa=16 Adaptive GFEM (after 3 iterations)

r Eigenvalue wr Error (%) Error (%) Error (%) ndof in iterationsb

1 2.46740 2.056e�3 8.936e�4 3.780e�13 1�1 dofþ2� 4 dof

2 22.20661 1.851e�2 8.188e�3 1.920e�13 1�2 dofþ2�7 dof

3 61.68503 5.141e�2 2.299e�2 6.335e�13 1�3 dofþ2�10 dof

4 120.90265 1.008e�1 4.579e�2 5.289e�13 1�4 dofþ2�13 dof

a ndof=effective number of degrees of freedom after introduction of boundary conditions.
b 1�n dofþ2�m dof indicates first iteration (FEM) with n degrees of freedom and the other two iterations (GFEM) with m degrees of freedom in each

analysis.

x

L1 L2

x1

E1
E2A1

A2

x2

�1
�2

Fig. 6. Stepped fixed-free bar composed of two materials.
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For the uniform fixed-free bar, one notes that the adaptive Generalized Finite Element Method reaches greater precision
than the h-version of Finite Element Method and the c-version of Composite Element Method. The adaptive process
converges rapidly requiring three iterations in order to achieve each target frequency with precision of the 10�13 order. The
first four frequencies with similar precision are reached by the standard Finite Element Method software Ansys with 410
truss elements (LINK8) that corresponds to 410 effective degrees of freedom after introduction of boundary conditions.
Results have shown that for each adaptive cycle run (blocks D to G in Fig. 3) the accuracy of the target frequency
considerably improves, reaching rapidly a narrow interval of convergence; however, they have also shown no effect on the
accuracy of the other frequencies. For example, in analysis 4 (Fig. 5d) the target frequency (4th frequency) achieves a
precision of 10�13 order after three iterations while the first three frequencies achieve a precision of 10�1 order.

6.2. Fixed-free stepped bar with variable materials and transversal sections

A stepped fixed-free bar composed of two different materials (Fig. 6), with lengths L1=L2, elasticity moduli E2=2E1, cross
section areas A2=2A1, and mass densities r2=8r1, is analyzed as follows:

The exact natural frequencies (or) are obtained solving the characteristic equation

E1A1k1 cosðk1L1Þcosðak1L2Þ � aE2A2k1 sinðk1L1Þsinðak1L2Þ

cosðak1L2Þ
¼ 0; (26)

where

a ¼

ffiffiffiffiffiffiffiffiffiffiffi
r2E1

r1E2

s
; (27)

k1 ¼ or

ffiffiffiffiffiffi
r1

E1

r
; (28)

k2 ¼ or

ffiffiffiffiffiffi
r2

E2

r
: (29)

This problem is analyzed by considering the h-version of Finite Element Method with a regular mesh and the c-version of
Composite Element Method with a two element mesh. Six adaptive Generalized Finite Element analyses are performed in
order to obtain each of the first six frequencies. The behavior of the relative error in each one of the first four analyses is
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Fig. 7. Error in the Adaptive Generalized Finite Element analyses of two materials fixed-free uniform bar. (a) analysis 1: 1st target frequency—2 element

mesh, (b) analysis 2: 2nd target frequency—2 element mesh, (c) analysis 3: 3rd target frequency—4 element mesh and (d) analysis 4: 4th target

frequency—4 element mesh. : 1st frequency; : 2nd frequency; : 3rd frequency; and : 4th frequency.

Table 2
Results to free vibration of two materials stepped fixed-free bar.

Frequency Exact solution FEM (16e) ndofa=16 Ansys ndofa=1000 CEM (2e 8c) ndofa=18 Adaptive GFEM (after 3 iterations)

r wr Error (%) Error (%) Error (%) Error (%) ndof in iterationsb

1 0.056616 2.911e�2 2.608e�3 5.596e�4 7.109e�13 1�2 dofþ2�10 dof

2 2.467401 1.233 3.780e�13 3.465e�2 3.648e�14 1�2 dofþ2�10 dof

3 8.431192 2.636 2.137e�4 8.587e�2 3.371e�13 1�4 dofþ2�20 dof

4 11.421249 4.146 1.836e�4 1.185e�1 1.000e�14 1�4 dofþ2�20 dof

5 22.206610 11.36 2.667e�3 3.328e�1 1.000e�14 1�6 dofþ2�30 dof

6 36.544977 9.828 4.055e�3 4.106e�1 8.166e�13 1�6 dofþ2�30 dof

a ndof=effective number of degrees of freedom after introduction of boundary conditions.
b 1�n dofþ2�m dof indicates first iteration (FEM) with n degrees of freedom and the other two iterations (GFEM) with m degrees of freedom.
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presented in Fig. 7. In order to determine the first and the second frequencies (Figs. 7a and b), the finite element mesh
must have at least two elements, for the third and fourth frequencies (Figs. 7c and d), it must have at least four elements,
and so on.

Table 2 presents the relative error for the first six non-dimensional eigenvalues wr ¼ ðk1L1Þ
2 obtained by the numerical

methods. The Finite Element Method (FEM) solution is obtained with 16 elements, that is, 16 effective degrees of freedom.
The problem is also solved by the Finite Element Method software Ansys with a 1000 truss element (LINK8) that
corresponds to 1000 effective degrees of freedom. The Composite Element Method (CEM) solution is obtained with two
elements and 8 enrichment functions that correspond to two nodal degrees of freedom and 16 field degrees of freedom.
Each analysis by the adaptive Generalized Finite Element Method (GFEM) has no more than 30 degrees of freedom in each
iteration.
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One notes that the adaptive Generalized Finite Element Method presents greater precision for the first six natural
frequencies than the h-version of the Finite Element Method and the c-version of the Composite Element Method. Like in
the first application, the target frequency convergence rate in all adaptive analyses is very high and the results have shown
that the process allows the accuracy of the target frequency to be improved without significant effect on the precision of
the other frequencies.
6.3. Fixed-fixed bar with sinusoidal variation of cross section area

In this topic, the longitudinal free vibration of a fixed-fixed non-uniform bar with sinusoidal variation of cross section
area, length L, elasticity modulus E and mass density r is analyzed. The boundary conditions are uð0; tÞ ¼ 0 and uðL; tÞ ¼ 0,
and the cross section area varies as

AðxÞ ¼ A0 sin2 x

L
þ 1

� �
; (30)

where A0 is a reference cross section area.
Kumar and Sujith [3] have presented exact analytical solutions for longitudinal free vibration of bars with sinusoidal and

polynomial area variations. The equation of motion of axial vibration is reduced to analytically solvable differential
equations using appropriate transformations.

This problem is analyzed by the h-version of Finite Element Method and the adaptive Generalized Finite Element
Method. Four adaptive analyses are performed in order to obtain each of the first four frequencies. The behavior of the
relative error in each analysis is presented in Fig. 8.

Table 3 presents the first four non-dimensional eigenvalues (br ¼ orL
ffiffiffiffiffiffiffiffiffi
r=E

p
) and their relative errors obtained by these

methods. The Finite Element Method (FEM) solution is obtained with 100 elements, that is, 99 effective degrees of freedom
after introduction of boundary conditions. The analyses by the adaptive Generalized Finite Element Method (GFEM) have
maximum number of degrees of freedom in each iteration ranging from 9 to 24.

One notes that the adaptive Generalized Finite Element Method reaches more precise values than the Finite Element
Method with even less degrees of freedom. The errors are greater than those from the uniform bars because the exact
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Fig. 8. Error in the Adaptive Generalized Finite Element analyses of fixed-fixed bar with sinusoidal area variation. (a) Analysis 1: 1st target frequency—2

element mesh, (b) analysis 2: 2nd target frequency—3 element mesh, (c) analysis 3: 3rd target frequency—4 element mesh and (d) analysis 4: 4th target

frequency—5 element mesh. : 1st frequency; : 2nd frequency; : 3rd frequency; and : 4th frequency.
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Fig. 9. Error in the Adaptive Generalized Finite Element analyses of fixed-fixed bar with polynomial area variation. (a) Analysis 1: 1st target frequency—2

element mesh, (b) analysis 2: 2nd target frequency—3 element mesh, (c) analysis 3: 3rd target frequency—4 element mesh and (d) analysis 4: 4th target

frequency—5 element mesh. : 1st frequency; : 2nd frequency; : 3rd frequency; and : 4th frequency.

Table 3
Results to free vibration of fixed-fixed bar with sinusoidal variation of area.

Frequency Exact solutiona FEM (100e) ndofb=99 Adaptive GFEM (after 3 iterations)

r br br Error (%) br Error (%) ndof in iterationsc

1 2.978189 2.978330 4.737e�3 2.978188 2.997e�5 1�1 dofþ2�9 dof

2 6.203097 6.204151 1.699e�2 6.203097 6.871e�6 1�2 dofþ2�14 dof

3 9.371576 9.375094 3.753e�2 9.371576 1.731e�6 1�3 dofþ2�19 dof

4 12.526519 12.534827 6.632e�2 12.526519 2.441e�6 1�4 dofþ2�24 dof

a Results from Ref. [3].
b ndof=effective number of degrees of freedom after introduction of boundary conditions;
c 1�n dofþ2�m dof indicates first iteration (FEM) with n degrees of freedom and the other two iterations (GFEM) with m degrees of freedom.
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vibration modes of non-uniform bars cannot be exactly represented by the trigonometric functions used as enrichment
functions; however, the precision is acceptable for engineering applications. Each analysis by the adaptive Generalized
Finite Element Method is able to refine the target frequency until the exhaustion of the approximation capacity of the
enriched subspace. Thus the precision can be improved by using a more refined mesh in the adaptive process.

6.4. Fixed-fixed bar with polynomial variation of cross section area

In this topic, the longitudinal free vibration of a fixed-fixed non-uniform bar with polynomial variation of cross section
area, length L, elasticity modulus E and mass density r is analyzed. The boundary conditions are uð0; tÞ ¼ 0 and uðL; tÞ ¼ 0,
and the cross section area varies as

AðxÞ ¼ A0
x

L
þ 1

� �4

; (31)

where A0 is the cross section area at x=0.
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Kumar and Sujith [3] have presented the general analytical solutions for longitudinal vibration of bars with polynomial
area variation. The characteristic equation for free vibration of a fixed-fixed bar with the 4th order polynomial area
variation is

J�3=2ðbrÞJ3=2ð2brÞ � J3=2ðbrÞJ�3=2ð2brÞ ¼ 0; (32)

where

br ¼ orL

ffiffiffiffi
r
E

r
; (33)

J3/2 and J�3/2 are Bessel functions of the first kind of order 3
2 and �3

2.
The free vibration of a bar with this area variation is analyzed by the h-version of Finite Element Method and the

adaptive Generalized Finite Element Method. Again four adaptive analyses are performed in order to obtain each of the first
four frequencies. The behavior of the relative error in each analysis is presented in Fig. 9.

Table 4 presents a comparison of the relative error of the first four non-dimensional eigenvalues (br) between both
numerical approaches. The Finite Element Method (FEM) solution is obtained with 100 elements, that is, 99 effective
degrees of freedom. The analyses by the adaptive Generalized Finite Element Method (GFEM) have no more than 24
degrees of freedom in each iteration.

Here, the same comments on the sinusoidal example are due. However, even for problems where the exact solution is
not represented by trigonometric functions, the results from the adaptive method are accurate.
6.5. Fifteen bar truss

The free axial vibration of a truss formed by 15 straight bars is analyzed to illustrate the application of the adaptive
Generalized Finite Element Method in structures formed by bars. This problem was proposed by Zeng [7] in order to check
the Composite Element Method. The geometry of the truss is presented in Fig. 10. All bars in the truss have cross section
area A=0.001 m2, mass density r=8000 kg m�3 and elasticity modulus E=2.1�1011 N m�2.

All analyses used 15 element mesh, the minimum number of C0 type elements necessary to represent the truss
geometry. The Finite Element Method and the c-version of Composite Element Method are applied. Fourteen analyses by
the adaptive Generalized Finite Element Method are performed in order to improve the accuracy of each of the first 14
natural frequencies. The frequencies obtained by each analysis are presented in Table 5. The Finite Element Method (FEM)
solution is obtained with 15 elements, that is, 14 effective degrees of freedom after introduction of boundary conditions.
The c-version of the Composite Element Method (CEM) solution is obtained with 15 elements and 1, 2, 4 and 6 enrichment
functions that correspond to 14 nodal degrees of freedom and 15, 30, 60 and 90 field degrees of freedom, respectively. All
analyses by the adaptive Generalized Finite Element Method (GFEM) have 14 degrees of freedom in the first iteration and
74 degrees of freedom in the following two.
Table 4
Results to free vibration of fixed-fixed bar with polynomial variation of area.

Frequency Exact solution FEM (100e) ndofa=99 Adaptive GFEM (after 3 iterations)

r br br Error (%) br Error (%) ndof in iterationsb

1 3.286007 3.286175 5.130e�3 3.286007 6.330e�6 1�1 dofþ2�9 dof

2 6.360678 6.361800 1.763e�2 6.360678 5.409e�7 1�2 dofþ2�14 dof

3 9.477196 9.480820 3.823e�2 9.477196 6.061e�7 1�3 dofþ2�19 dof

4 12.605890 12.614341 6.704e�2 12.605890 4.269e�7 1�4 dofþ2�24 dof

a ndof=effective number of degrees of freedom after introduction of boundary conditions.
b 1�n dofþ2�m dof indicates first iteration (FEM) with n degrees of freedom and the other two iterations (GFEM) with m degrees of freedom.

8 m
2 m 2 m2 m 2 m

2 m

Fig. 10. Fifteen bar truss.
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Table 5
Natural frequencies of the 15 bar truss.

r FEM (15e)

ndofa=14

CEMb (15e 1c)

ndofa=29

CEMb (15e 2c)

ndofa=44

CEM (15e 4c)

ndofa=74

CEM (15e 6c)

ndofa=104

Adap. GFEM (15e 3i)

ndofa=74c

or (rad s�1) or (rad s�1) or (rad s�1) or (rad s�1) or (rad s�1) or (rad s�1)

1 682.272384 679.824639 679.821793 679.791992 679.788127 679.786383

2 1149.296348 1139.376074 1139.341796 1139.223267 1139.207727 1139.200586

3 1612.350232 1582.388830 1582.181618 1581.837705 1581.792424 1581.771367

4 2519.866118 2411.837021 2410.250884 2409.132928 2408.982871 2408.911573

5 2715.759047 2604.117985 2601.848419 2600.647590 2600.484076 2600.405466

6 2968.220775 2818.301138 2815.435334 2813.921841 2813.716162 2813.617278

7 3573.361130 3300.489329 3293.258728 3290.816121 3290.475697 3290.308232

8 4207.781031 3824.741153 3811.365219 3808.112160 3807.646059 3807.411395

9 5134.736048 4507.646123 4480.524910 4476.024121 4475.351429 4475.001704

10 5399.565563 4746.383128 4707.913787 4702.826748 4702.039754 4701.621014

11 7163.278724 6189.385029 6069.269438 6060.720374 6059.228964 6058.376768

12 7471.073109 6493.482868 6341.616890 6331.997689 6330.275690 6329.278684

13 7586.074215 6623.729777 6455.516182 6445.563179 6443.724911 6442.644839

14 8462.586195 7386.073478 7381.063755 7380.481418 7380.395797 7380.351301

a ndof=effective number of degrees of freedom after introduction of boundary conditions.
b Results from Ref. [7].
c First iteration (FEM) with 14 degrees of freedom and the other two iterations (GFEM) with 74 degrees of freedom.
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This special case is not well suited to the h-version of Finite Element Method since it demands the adoption of restraints
at each internal bar node in order to avoid modeling instability. The Finite Element Method analysis of this truss can be
improved by applying bar elements of higher order (p-version) or beam elements. The results show that both the c-version
of Composite Element Method and the adaptive Generalized Finite Element Method converge to the same frequencies.
7. Conclusion

The main contribution of the present study consisted in proposing an adaptive Generalized Finite Element Method for
vibration analysis. This study performed a preliminary formulation of free vibration analysis of straight bars and trusses by
the proposed method. The Generalized Finite Element Method results were compared with those obtained by the h-version
of Finite Element Method and the c-version of the Composite Element Method.

In this adaptive Generalized Finite Element Method, trigonometric enrichment functions depending on geometric and
mechanical properties of the elements were added to the linear Finite Element Method shape functions by the partition of
unity approach. This technique allows an accurate adaptive process that converges very fast and is able to refine the
frequency related to a specific vibration mode. In addition the enrichment functions are easily obtained and the
introduction of boundary conditions follows the standard finite element procedure.

The results have shown that the adaptive Generalized Finite Element Method achieves narrower precision than the
c-version of Composite Element Method and the h-version of Finite Element Method in free longitudinal vibration analysis
of uniform and non-uniform straight bars for the same number of degrees of freedom. It has been observed that even for
problems where the exact solutions are not represented by trigonometric functions, like non-uniform bars, the results from
the adaptive method are accurate with relatively few degrees of freedom. This method has been applied in free vibration
analysis of trusses showing results very close to those of the Composite Element Method.

It is worth remarking that the adaptive Generalized Finite Element Method is an iterative process that requires less
computational effort than it appears. Instead of dealing with a matrix of (nþ2m)� (nþ2m) dimension, the problem is
divided in one of n�n, and two of 2m�2m matrices, significantly reducing the amount of arithmetic. Since the adaptive
approach requires much less degrees of freedom than the standard Finite Element Method, the adaptive process spends less
computational effort in order to obtain similar accuracy.

The adaptive Generalized Finite Element Method has shown to be efficient in the analysis of longitudinal vibration of
bars and has indicated that it can be applied even for a coarse discretization scheme in complex practical problems. Future
research will extend this adaptive method to other structural elements like beams, plates and shells.
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